Effect of hydrogen bond on RNA
Please help improve the educational quality of this resource to increase engagement by participants. Any concrete improvements made by January 1, 2025 may allow it to be kept. You may remove {{proposed deletion}} from this resource's source text to contest this proposal, with or without discussion. The Nominator gave the following reason for their nomination:
|
http://www.neok12.com/php/watch.php?v=zX5c5c794256074273610f6b&t=Organic-Chemistrylesson 2lesson 3Transcription is the process of creating a complementary RNA copy of a sequence of DNA. Both RNA and DNA are nucleic acids, which use base pairs of nucleotides as a complementary language that can be converted back and forth from DNA to RNA by the action of the correct enzymes. During transcription, a DNA sequence is read by RNA polymerase, which produces a complementary, antiparallel RNA strand. As opposed to DNA replication, transcription results in an RNA complement that includes uracil (U) in all instances where thymine (T) would have occurred in a DNA complement. Transcription can be explained easily in 4 or 5 simple steps, each moving like a wave along the DNA. RNA polymerase unwinds/"unzips" the DNA by breaking the hydrogen bonds between complimentary nucleotides. RNA nucleotides are paired with complementary DNA bases. RNA sugar-phosphate backbone forms with assistance from RNA polymerase. Hydrogen bonds of the untwisted RNA+DNA helix break, freeing the newly synthesized RNA strand. If the cell has a nucleus, the RNA is further processed and then moves through the small nuclear pores to the cytoplasm. Transcription is the first step leading to gene expression. The stretch of DNA transcribed into an RNA molecule is called a transcription unit and encodes at least one gene. If the gene transcribed encodes a protein, the result of transcription is messenger RNA (mRNA), which will then be used to create that protein via the process of translation. Alternatively, the transcribed gene may encode for either ribosomal RNA (rRNA) or transfer RNA (tRNA), other components of the protein-assembly process, or other ribozymes. A DNA transcription unit encoding for a protein contains not only the sequence that will eventually be directly translated into the protein (the coding sequence) but also regulatory sequences that direct and regulate the synthesis of that protein. The regulatory sequence before (upstream from) the coding sequence is called the five prime untranslated region (5'UTR), and the sequence following (downstream from) the coding sequence is called the three prime untranslated region (3'UTR). Transcription has some proofreading mechanisms, but they are fewer and less effective than the controls for copying DNA; therefore, transcription has a lower copying fidelity than DNA replication. As in DNA replication, DNA is read from 3' → 5' during transcription. Meanwhile, the complementary RNA is created from the 5' → 3' direction. This means its 5' end is created first in base pairing. Although DNA is arranged as two antiparallel strands in a double helix, only one of the two DNA strands, called the template strand, is used for transcription. This is because RNA is only single-stranded, as opposed to double-stranded DNA. The other DNA strand is called the coding strand, because its sequence is the same as the newly created RNA transcript (except for the substitution of uracil for thymine). The use of only the 3' → 5' strand eliminates the need for the Okazaki fragments seen in DNA replication. Transcription is divided into 5 stages: pre-initiation, initiation, promoter clearance, elongation and termination[1].