Consider n {\displaystyle {}n} complex numbers z 1 , z 2 , … , z n {\displaystyle {}z_{1},z_{2},\ldots ,z_{n}} lying in the disc B {\displaystyle {}B} with center ( 0 , 0 ) {\displaystyle {}(0,0)} and radius 1 {\displaystyle {}1} , that is in B = { z ∈ C ∣ | z | ≤ 1 } {\displaystyle {}B={\left\{z\in \mathbb {C} \mid \vert {z}\vert \leq 1\right\}}} . Prove that there exists a point w ∈ B {\displaystyle {}w\in B} such that