Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Differentiable function/R/1 over g 1...g n/Derivation through Induction/Exercise
Language
Watch
Edit
Let
g
1
,
g
2
,
…
,
g
n
:
R
⟶
R
∖
{
0
}
{\displaystyle g_{1},g_{2},\ldots ,g_{n}\colon \mathbb {R} \longrightarrow \mathbb {R} \setminus \{0\}}
denote
differentiable functions
. Prove, by induction over
n
{\displaystyle {}n}
, the relation
(
1
g
1
⋅
g
2
⋯
g
n
)
′
=
−
1
g
1
⋅
g
2
⋯
g
n
⋅
(
g
1
′
g
1
+
g
2
′
g
2
+
⋯
+
g
n
′
g
n
)
.
{\displaystyle {}{\left({\frac {1}{g_{1}\cdot g_{2}\cdots g_{n}}}\right)}^{\prime }={\frac {-1}{g_{1}\cdot g_{2}\cdots g_{n}}}\cdot {\left({\frac {g_{1}'}{g_{1}}}+{\frac {g_{2}'}{g_{2}}}+\cdots +{\frac {g_{n}'}{g_{n}}}\right)}\,.}
Create a solution