Let K {\displaystyle {}K} be a field and n ∈ N + {\displaystyle {}n\in \mathbb {N} _{+}} . Show that the determinant
fulfills (for arbitrary k ∈ { 1 , … , n } {\displaystyle {}k\in \{1,\ldots ,n\}} and arbitrary n − 1 {\displaystyle {}n-1} vectors v 1 , … , v k − 1 , v k + 1 , … , v n ∈ K n {\displaystyle {}v_{1},\ldots ,v_{k-1},v_{k+1},\ldots ,v_{n}\in K^{n}} , for u ∈ K n {\displaystyle {}u\in K^{n}} and for s ∈ K {\displaystyle {}s\in K} ) the equality