Cryptography/Caesar Cipher

In cryptography, a Caesar cipher, also known as Caesar's cipher, the shift cipher, Caesar's code or Caesar shift, is one of the simplest and most widely known encryption techniques. It is a type of substitution cipher in which each letter in the plaintext is replaced by a letter some fixed number of positions down the alphabet. For example, with a left shift of 3, D would be replaced by A, E would become B, and so on. The method is named after Julius Caesar, who used it in his private correspondence.

The encryption step performed by a Caesar cipher is often incorporated as part of more complex schemes, such as the Vigenère cipher, and still has modern application in the ROT13 system. As with all single-alphabet substitution ciphers, the Caesar cipher is easily broken and in modern practice offers essentially no communications security.

Example

The transformation can be represented by aligning two alphabets; the cipher alphabet is the plain alphabet rotated left or right by some number of positions. For instance, here is a Caesar cipher using a left rotation of three places, equivalent to a right shift of 23 (the shift parameter is used as the key):

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Cipher: XYZABCDEFGHIJKLMNOPQRSTUVW


When encrypting, a person looks up each letter of the message in the "plain" line and writes down the corresponding letter in the "cipher" line.

Plaintext: THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

Ciphertext: QEB NRFZH YOLTK CLU GRJMP LSBO QEB IXWV ALD


Deciphering is done in reverse, with a right shift of 3.