Assume
|
∫
∂
T
f
|
=
c
≥
0
{\displaystyle \left|\int \limits _{\partial T}f\right|=c\geq 0}
.
It will be shown that
c
=
0
{\displaystyle c=0}
.
First, subdivide
T
{\displaystyle T}
into four triangles, marked
T
1
{\displaystyle T^{1}}
,
T
2
{\displaystyle T^{2}}
,
T
3
{\displaystyle T^{3}}
,
T
4
{\displaystyle T^{4}}
by joining the midpoints on the sides. Then it is true that
∫
∂
T
f
=
∑
r
=
1
4
(
∫
T
r
f
)
{\displaystyle \int \limits _{\partial T}f=\sum \limits _{r=1}^{4}\left(\int \limits _{T^{r}}f\right)}
.
Giving that
c
=
|
∫
∂
T
f
|
≤
∑
r
=
1
4
|
∫
T
r
f
|
{\displaystyle c=\left|\int \limits _{\partial T}f\right|\leq \sum \limits _{r=1}^{4}\left|\int \limits _{T^{r}}f\right|}
Choose
r
{\displaystyle r}
such that
|
∫
∂
T
r
f
|
≥
1
4
c
{\displaystyle \left|\int \limits _{\partial T^{r}}f\right|\geq {\frac {1}{4}}c}
Defining
T
r
{\displaystyle T^{r}}
as
T
1
{\displaystyle T_{1}}
, then
|
∫
∂
T
1
f
|
≥
1
4
c
{\displaystyle \left|\int \limits _{\partial T_{1}}f\right|\geq {\frac {1}{4}}c}
and
L
(
∂
T
1
)
=
1
2
L
(
∂
T
)
{\displaystyle L\left(\partial T_{1}\right)={\frac {1}{2}}L\left(\partial T\right)}
(where
L
(
γ
)
{\displaystyle L\left(\gamma \right)}
describes length of curve).
Repeat this process of subdivision to get a sequence of triangles
T
⊃
T
1
⊃
T
2
⊃
…
⊃
…
T
n
⊃
…
{\displaystyle T\supset T_{1}\supset T_{2}\supset \ldots \supset \ldots T_{n}\supset \ldots }
satisfying that
|
∫
∂
T
n
f
|
≥
(
1
4
)
n
c
{\displaystyle \left|\int \limits _{\partial T_{n}}f\right|\geq \left({\frac {1}{4}}\right)^{n}c}
and
L
(
∂
T
n
)
=
(
1
2
)
n
L
(
∂
T
)
{\displaystyle L\left(\partial T_{n}\right)=\left({\frac {1}{2}}\right)^{n}L\left(\partial T\right)}
.
Claim: The nested sequence
T
¯
⊃
T
1
¯
⊃
T
2
¯
⊃
…
⊃
T
n
¯
⊃
…
{\displaystyle {\bar {T}}\supset {\bar {T_{1}}}\supset {\bar {T_{2}}}\supset \ldots \supset {\bar {T_{n}}}\supset \ldots }
contains a point
z
0
∈
⋂
n
=
1
∞
T
n
¯
{\displaystyle z_{0}\in \bigcap \limits _{n=1}^{\infty }{\bar {T_{n}}}}
. On each step choose a point
z
n
∈
T
n
{\displaystyle z_{n}\in T_{n}}
. Then it is easy to show that
(
z
n
)
{\displaystyle \left(z_{n}\right)}
is a Cauchy sequence. Then
(
z
n
)
{\displaystyle \left(z_{n}\right)}
converges to a point
z
0
∈
⋂
n
=
1
∞
T
n
¯
{\displaystyle z_{0}\in \bigcap \limits _{n=1}^{\infty }{\bar {T_{n}}}}
since each of the
T
n
¯
{\displaystyle {\bar {T_{n}}}}
s are closed, hence, proving the claim.
We can generate another estimate of
c
{\displaystyle c}
using the fact that
f
{\displaystyle f}
is differentiable. Since
f
{\displaystyle f}
is differentiable at
z
0
{\displaystyle z_{0}}
, for a given
ε
>
0
{\displaystyle \varepsilon >0}
there exists
δ
>
0
{\displaystyle \delta >0}
such that
0
<
|
z
−
z
0
|
<
δ
{\displaystyle 0<\left|z-z_{0}\right|<\delta }
implies
|
f
(
z
)
−
f
(
z
0
)
z
−
z
0
−
f
′
(
z
0
)
|
<
ε
{\displaystyle \left|{\frac {f\left(z\right)-f\left(z_{0}\right)}{z-z_{0}}}-f'\left(z_{0}\right)\right|<\varepsilon }
which can be rewritten as
0
<
|
z
−
z
0
|
<
δ
{\displaystyle 0<\left|z-z_{0}\right|<\delta }
implies
|
f
(
z
)
−
f
(
z
0
)
−
f
′
(
z
0
)
(
z
−
z
0
)
|
<
ε
|
z
−
z
0
|
{\displaystyle \left|f\left(z\right)-f\left(z_{0}\right)-f'\left(z_{0}\right)\left(z-z_{0}\right)\right|<\varepsilon \left|z-z_{0}\right|}
For
z
∈
T
n
{\displaystyle z\in T_{n}}
we have
|
z
−
z
0
|
<
L
(
∂
)
{\displaystyle \left|z-z_{0}\right|<L\left(\partial \right)}
, and so, by the Estimation Lemma we have that
|
∫
∂
T
n
{
f
(
z
)
−
(
f
(
z
0
)
+
f
′
(
z
0
)
(
z
−
z
0
)
)
}
d
z
|
≤
ε
L
2
(
∂
)
{\displaystyle \left|\int \limits _{\partial T_{n}}\left\{f\left(z\right)-\left(f\left(z_{0}\right)+f'\left(z_{0}\right)\left(z-z_{0}\right)\right)\right\}dz\right|\leq \varepsilon L^{2}\left(\partial \right)}
As
f
(
z
0
)
+
f
′
(
z
0
)
(
z
−
z
0
)
{\displaystyle f\left(z_{0}\right)+f'\left(z_{0}\right)\left(z-z_{0}\right)}
is of the form
α
z
+
β
{\displaystyle \alpha z+\beta }
it has an antiderivative in D, and so
∫
∂
T
n
f
(
z
0
)
+
f
′
(
z
0
)
(
z
−
z
0
)
=
0
{\displaystyle \int \limits _{\partial T_{n}}f\left(z_{0}\right)+f'\left(z_{0}\right)\left(z-z_{0}\right)=0}
, and the above is then just
|
∫
∂
T
n
f
(
z
)
d
z
|
≤
ε
L
2
(
∂
)
{\displaystyle \left|\int \limits _{\partial T_{n}}f\left(z\right)dz\right|\leq \varepsilon L^{2}\left(\partial \right)}
Notice that
(
1
4
)
n
c
≤
|
∫
∂
T
n
f
(
z
)
d
z
|
≤
ε
L
2
(
∂
)
=
(
1
4
)
n
ε
L
2
(
∂
)
{\displaystyle \left({\frac {1}{4}}\right)^{n}c\leq \left|\int \limits _{\partial T_{n}}f\left(z\right)dz\right|\leq \varepsilon L^{2}\left(\partial \right)=\left({\frac {1}{4}}\right)^{n}\varepsilon L^{2}\left(\partial \right)}
Giving
c
≤
ε
L
2
(
∂
)
{\displaystyle c\leq \varepsilon L^{2}\left(\partial \right)}
Since
ε
>
0
{\displaystyle \varepsilon >0}
can be chosen arbitrary small, then
c
=
0
{\displaystyle c=0}
.