This quick reference lists formulas often used in solving calculus problems.
Wikipedia includes a useful summary of differentiation rules . These include rules for computing the derivatives of the sum, product, and other combinations of functions.
Rules for basic functions
edit
Here are the rules for the derivatives of the most common basic functions, where a is a real number.
Derivatives of powers :
d
d
x
x
a
=
a
x
a
−
1
.
{\displaystyle {\frac {d}{dx}}x^{a}=ax^{a-1}.}
Exponential and logarithmic functions :
d
d
x
e
x
=
e
x
.
{\displaystyle {\frac {d}{dx}}e^{x}=e^{x}.}
d
d
x
a
x
=
a
x
ln
(
a
)
,
a
>
0
{\displaystyle {\frac {d}{dx}}a^{x}=a^{x}\ln(a),\qquad a>0}
d
d
x
ln
(
x
)
=
1
x
,
x
>
0.
{\displaystyle {\frac {d}{dx}}\ln(x)={\frac {1}{x}},\qquad x>0.}
d
d
x
log
a
(
x
)
=
1
x
ln
(
a
)
,
x
,
a
>
0
{\displaystyle {\frac {d}{dx}}\log _{a}(x)={\frac {1}{x\ln(a)}},\qquad x,a>0}
Trigonometric functions :
d
d
x
sin
(
x
)
=
cos
(
x
)
.
{\displaystyle {\frac {d}{dx}}\sin(x)=\cos(x).}
d
d
x
cos
(
x
)
=
−
sin
(
x
)
.
{\displaystyle {\frac {d}{dx}}\cos(x)=-\sin(x).}
d
d
x
tan
(
x
)
=
sec
2
(
x
)
=
1
cos
2
(
x
)
=
1
+
tan
2
(
x
)
.
{\displaystyle {\frac {d}{dx}}\tan(x)=\sec ^{2}(x)={\frac {1}{\cos ^{2}(x)}}=1+\tan ^{2}(x).}
Inverse trigonometric functions :
d
d
x
arcsin
(
x
)
=
1
1
−
x
2
,
−
1
<
x
<
1.
{\displaystyle {\frac {d}{dx}}\arcsin(x)={\frac {1}{\sqrt {1-x^{2}}}},\qquad -1<x<1.}
d
d
x
arccos
(
x
)
=
−
1
1
−
x
2
,
−
1
<
x
<
1.
{\displaystyle {\frac {d}{dx}}\arccos(x)=-{\frac {1}{\sqrt {1-x^{2}}}},\qquad -1<x<1.}
d
d
x
arctan
(
x
)
=
1
1
+
x
2
{\displaystyle {\frac {d}{dx}}\arctan(x)={\frac {1}{1+x^{2}}}}