Boundary Value Problems
--First Order Differential Equation -- If the function F ( t , y ) {\displaystyle F(t,y)} is continuous in the variable t ∈ { t 0 − δ , t 0 + δ } {\displaystyle t\in \{t_{0}-\delta ,t_{0}+\delta \}} and uniformly Lipschitz in the variable y {\displaystyle y} d y ( t ) d t = F ( t , y ( t ) ) {\displaystyle {\frac {dy(t)}{dt}}=F(t,y(t))}