Boolf prop/3-ary/dominion

Number of blocks:   44 Integer partition:   81 + 83 + 84 + 86 + 1212

# dominion block
1 (0, 0) [0]
1 (0, 3) [1]
4 (42, 1) [2, 4, 16, 128]
4 (42, 2) [3, 5, 17, 129]
6 (14, 0) [6, 18, 20, 130, 132, 144]
6 (14, 3) [7, 19, 21, 131, 133, 145]
3 (110, 1) [8, 32, 64]
3 (110, 2) [9, 33, 65]
12 (2, 0) [10, 12, 24, 34, 36, 48, 66, 68, 80, 136, 160, 192]
12 (2, 3) [11, 13, 25, 35, 37, 49, 67, 69, 81, 137, 161, 193]
6 (8, 1) [14, 50, 84, 152, 164, 194]
6 (8, 2) [15, 51, 85, 153, 165, 195]
4 (22, 1) [22, 134, 146, 148]
4 (22, 2) [23, 135, 147, 149]
12 (26, 1) [26, 28, 38, 52, 70, 82, 138, 140, 162, 176, 196, 208]
12 (26, 2) [27, 29, 39, 53, 71, 83, 139, 141, 163, 177, 197, 209]
12 (44, 0) [30, 54, 86, 142, 154, 156, 166, 178, 180, 198, 210, 212]
12 (44, 3) [31, 55, 87, 143, 155, 157, 167, 179, 181, 199, 211, 213]
3 (6, 0) [40, 72, 96]
3 (6, 3) [41, 73, 97]
12 (44, 1) [42, 44, 56, 74, 76, 88, 98, 100, 112, 168, 200, 224]
12 (44, 2) [43, 45, 57, 75, 77, 89, 99, 101, 113, 169, 201, 225]
12 (26, 0) [46, 58, 78, 92, 114, 116, 172, 184, 202, 216, 226, 228]
12 (26, 3) [47, 59, 79, 93, 115, 117, 173, 185, 203, 217, 227, 229]
6 (8, 0) [60, 90, 102, 170, 204, 240]
6 (8, 3) [61, 91, 103, 171, 205, 241]
12 (2, 1) [62, 94, 118, 174, 186, 188, 206, 218, 220, 230, 242, 244]
12 (2, 2) [63, 95, 119, 175, 187, 189, 207, 219, 221, 231, 243, 245]
1 (104, 1) [104]
1 (104, 2) [105]
4 (22, 0) [106, 108, 120, 232]
4 (22, 3) [107, 109, 121, 233]
6 (14, 1) [110, 122, 124, 234, 236, 248]
6 (14, 2) [111, 123, 125, 235, 237, 249]
4 (42, 0) [126, 238, 250, 252]
4 (42, 3) [127, 239, 251, 253]
1 (104, 0) [150]
1 (104, 3) [151]
3 (6, 1) [158, 182, 214]
3 (6, 2) [159, 183, 215]
3 (110, 0) [190, 222, 246]
3 (110, 3) [191, 223, 247]
1 (0, 1) [254]
1 (0, 2) [255]