Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Binomial coefficient/Sum in Pascal triangle/Fact/Proof
Language
Watch
Edit
<
Binomial coefficient/Sum in Pascal triangle/Fact
Proof
We have
(
n
k
)
+
(
n
k
−
1
)
=
n
!
(
n
−
k
)
!
k
!
+
n
!
(
n
−
(
k
−
1
)
)
!
(
k
−
1
)
!
=
n
!
(
n
−
k
)
!
k
!
+
n
!
(
n
+
1
−
k
)
!
(
k
−
1
)
!
=
(
n
+
1
−
k
)
⋅
n
!
(
n
+
1
−
k
)
!
k
!
+
k
⋅
n
!
(
n
+
1
−
k
)
!
k
!
=
(
n
+
1
−
k
+
k
)
⋅
n
!
(
n
+
1
−
k
)
!
k
!
=
(
n
+
1
)
!
(
n
+
1
−
k
)
!
k
!
=
(
n
+
1
k
)
.
{\displaystyle {}{\begin{aligned}{\binom {n}{k}}+{\binom {n}{k-1}}&={\frac {n!}{(n-k)!k!}}+{\frac {n!}{(n-(k-1))!(k-1)!}}\\&={\frac {n!}{(n-k)!k!}}+{\frac {n!}{(n+1-k)!(k-1)!}}\\&={\frac {(n+1-k)\cdot n!}{(n+1-k)!k!}}+{\frac {k\cdot n!}{(n+1-k)!k!}}\\&={\frac {(n+1-k+k)\cdot n!}{(n+1-k)!k!}}\\&={\frac {(n+1)!}{(n+1-k)!k!}}\\&={\binom {n+1}{k}}.\end{aligned}}}
To fact