Let K {\displaystyle {}K} be a field, and let V {\displaystyle {}V} be a K {\displaystyle {}K} -vector space of dimension n {\displaystyle {}n} . Let u = u 1 , … , u n , v = v 1 , … , v n , {\displaystyle {}{\mathfrak {u}}=u_{1},\ldots ,u_{n},\,{\mathfrak {v}}=v_{1},\ldots ,v_{n},\,} and w = w 1 , … , w n {\displaystyle {}{\mathfrak {w}}=w_{1},\ldots ,w_{n}} denote bases of V {\displaystyle {}V} .
transformation matrices fulfill the relation
In particular, we have