Consider the one-dimensional heat equation given by
−
d
2
u
d
x
2
=
f
(
x
)
x
∈
(
0
,
1
)
,
u
(
0
)
=
0
,
u
(
1
)
=
0
.
{\displaystyle -{\cfrac {d^{2}u}{dx^{2}}}=f(x)\qquad x\in (0,1),~~u(0)=0,u(1)=0~.}
This equation has Green's function
g
(
x
,
y
)
{\displaystyle g(x,y)}
which satisfies
−
∂
2
g
∂
x
2
=
δ
(
x
−
y
)
x
,
y
∈
(
0
,
1
)
{\displaystyle -{\frac {\partial ^{2}g}{\partial x^{2}}}=\delta (x-y)\qquad x,y\in (0,1)}
The Green's function is given by
g
(
x
,
y
)
=
{
(
1
−
y
)
x
0
≤
x
<
y
(
1
−
x
)
y
y
<
x
≤
1
{\displaystyle g(x,y)={\begin{cases}(1-y)~x&0\leq x<y\\(1-x)~y&y<x\leq 1\end{cases}}}
or,
g
(
x
,
y
)
=
(
1
−
y
)
x
+
(
y
−
x
)
H
(
x
−
y
)
.
{\displaystyle g(x,y)=(1-y)~x+(y-x)~H(x-y)~.}
Therefore,
g
x
(
x
,
y
)
=
(
1
−
y
)
−
H
(
x
−
y
)
+
(
y
−
x
)
∂
∂
x
[
H
(
x
−
y
)
]
=
(
1
−
y
)
−
H
(
x
−
y
)
+
(
y
−
x
)
δ
(
x
−
y
)
{\displaystyle g_{x}(x,y)=(1-y)-H(x-y)+(y-x){\frac {\partial }{\partial x}}[H(x-y)]=(1-y)-H(x-y)+(y-x)\delta (x-y)}
Now,
⟨
x
δ
(
x
)
,
ϕ
⟩
=
⟨
δ
(
x
)
,
x
ϕ
⟩
=
(
x
ϕ
)
(
0
)
=
0
{\displaystyle \left\langle x~\delta (x),\phi \right\rangle =\left\langle \delta (x),x~\phi \right\rangle =(x~\phi )(0)=0}
Hence,
g
x
(
x
,
y
)
=
(
1
−
y
)
−
H
(
x
−
y
)
{\displaystyle g_{x}(x,y)=(1-y)-H(x-y)}
And,
g
x
x
(
x
,
y
)
=
−
δ
(
x
−
y
)
{\displaystyle g_{xx}(x,y)=-\delta (x-y)}
Note that the second derivative of
g
{\displaystyle g}
is a delta function.
We can use this observation to arrive at a more general description of the
Green's function for a particular differential equation. That is, for a
n
{\displaystyle n}
th order linear differential operator we would want the
n
{\displaystyle n}
th derivative of
g
(
x
,
y
)
{\displaystyle g(x,y)}
to be like a delta function. Thus the
(
n
−
1
)
{\displaystyle (n-1)}
th derivative of
g
(
x
,
y
)
{\displaystyle g(x,y)}
should be like a Heaviside function and all lower derivatives should
be continuous.
In particular, consider the operator
L
{\displaystyle {\mathcal {L}}}
acting on
g
{\displaystyle g}
such that
L
g
=
δ
(
x
−
y
)
{\displaystyle {\mathcal {L}}~g=\delta (x-y)}
with
L
=
a
n
(
x
)
d
n
d
x
n
+
a
n
−
1
(
x
)
d
(
n
−
1
)
d
x
(
n
−
1
)
+
…
a
0
(
x
)
{\displaystyle {\mathcal {L}}=a_{n}(x)~{\cfrac {d^{n}}{dx^{n}}}+a_{n-1}(x)~{\cfrac {d^{(n-1)}}{dx^{(n-1)}}}+\dots a_{0}(x)}
where
a
i
(
x
)
∈
C
∞
{\displaystyle a_{i}(x)\in C^{\infty }}
. If we integrate this equation across the
point
x
=
y
{\displaystyle x=y}
from
x
=
y
−
1
{\displaystyle x=y^{-1}}
to
x
=
y
+
{\displaystyle x=y^{+}}
we get
a
n
(
x
)
d
n
−
1
g
d
x
n
−
1
|
x
=
y
−
x
=
y
+
=
∫
y
−
1
y
+
δ
(
x
)
d
x
=
1
{\displaystyle \left.a_{n}(x){\cfrac {d^{n-1}g}{dx^{n-1}}}\right|_{x=y^{-}}^{x=y^{+}}=\int _{y^{-1}}^{y^{+}}\delta (x)~{\text{d}}x=1}
This condition is called a Jump condition .
This suggests that the Green's function
g
(
x
,
y
)
{\displaystyle g(x,y)}
satisfying
L
x
g
(
x
,
y
)
=
δ
(
x
−
y
)
{\displaystyle {\mathcal {L}}_{x}g(x,y)=\delta (x-y)}
in the sense of distributions has the properties that
L
x
g
(
x
,
y
)
=
0
{\displaystyle {\mathcal {L}}_{x}g(x,y)=0}
for all
x
≠
y
{\displaystyle x\neq y}
.
d
k
g
(
x
,
y
)
d
x
k
{\displaystyle {\cfrac {d^{k}g(x,y)}{dx^{k}}}}
is continuous at
x
=
y
{\displaystyle x=y}
for
k
=
0
,
1
,
…
,
n
−
2
{\displaystyle k=0,1,\dots ,n-2}
.
d
n
−
1
g
(
x
,
y
)
d
x
n
−
1
|
x
=
y
−
x
=
y
+
=
1
a
n
(
y
)
{\displaystyle \left.{\cfrac {d^{n-1}g(x,y)}{dx^{n-1}}}\right|_{x=y^{-}}^{x=y^{+}}={\cfrac {1}{a_{n}(y)}}}
.
g
(
x
,
y
)
{\displaystyle g(x,y)}
must satisfy all appropriate homogeneous boundary conditions.
If the Green's function exists then
u
(
x
)
=
∫
a
b
g
(
x
,
y
)
f
(
y
)
d
y
.
{\displaystyle u(x)=\int _{a}^{b}g(x,y)~f(y)~{\text{d}}y~.}
Let us consider a second order differentiable linear operator, i.e.,
n
=
2
{\displaystyle n=2}
on
[
a
,
b
]
{\displaystyle [a,b]}
with separated boundary conditions,
α
1
u
(
a
)
+
β
1
u
′
(
a
)
=
0
⟹
B
1
[
u
(
a
)
]
=
0
α
2
u
(
b
)
+
β
2
u
′
(
b
)
=
0
⟹
B
2
[
u
(
b
)
]
=
0
{\displaystyle {\begin{aligned}\alpha _{1}~u(a)+\beta _{1}~u'(a)&=0\qquad \implies {\mathcal {B}}_{1}[u(a)]=0\\\alpha _{2}~u(b)+\beta _{2}~u'(b)&=0\qquad \implies {\mathcal {B}}_{2}[u(b)]=0\end{aligned}}}
where
B
1
{\displaystyle {\mathcal {B}}_{1}}
and
B
2
{\displaystyle {\mathcal {B}}_{2}}
are boundary operators .
The differential equation
L
x
g
(
x
,
y
)
=
0
{\displaystyle {\mathcal {L}}_{x}g(x,y)=0}
and its required continuity conditions are satisfied is
g
(
x
,
y
)
=
{
A
1
u
1
(
x
)
u
2
(
y
)
a
≤
y
<
x
A
2
u
2
(
x
)
u
1
(
y
)
y
<
x
≤
b
{\displaystyle g(x,y)={\begin{cases}A_{1}~u_{1}(x)~u_{2}(y)&a\leq y<x\\A_{2}~u_{2}(x)~u_{1}(y)&y<x\leq b\end{cases}}}
The first two terms above are to satisfy the boundary conditions while the
third terms gives us continuity.
The jump condition is that
d
g
(
x
,
y
)
d
x
|
x
=
y
−
x
=
y
+
=
1
a
2
(
y
)
=
A
[
u
2
′
(
y
)
u
1
(
y
)
−
u
1
′
(
y
)
u
2
(
y
)
]
=
A
W
(
y
)
{\displaystyle \left.{\cfrac {dg(x,y)}{dx}}\right|_{x=y^{-}}^{x=y^{+}}={\cfrac {1}{a_{2}(y)}}=A[u_{2}'(y)~u_{1}(y)-u_{1}'(y)~u_{2}(y)]=A~W(y)}
where
W
(
y
)
{\displaystyle W(y)}
is the Wronskian .
Therefore,
A
=
1
a
2
(
y
)
W
(
y
)
,
W
(
y
)
≠
0
{\displaystyle A={\cfrac {1}{a_{2}(y)~W(y)}},~~~W(y)\neq 0}
For the heat equation
L
u
=
−
u
″
{\displaystyle {\mathcal {L}}u=-u''}
we can take
u
1
(
x
)
=
x
,
u
2
(
x
)
=
(
1
−
x
)
,
and
W
(
y
)
=
−
1
{\displaystyle u_{1}(x)=x,~~u_{2}(x)=(1-x),~~{\text{and}}~~W(y)=-1}
That gives us
A
=
1
{\displaystyle A=1}
and we recover the same
g
(
x
,
y
)
{\displaystyle g(x,y)}
as before.
In the general case, the solution is
u
(
x
)
=
∫
a
x
u
2
(
x
)
u
1
(
y
)
f
(
y
)
a
2
(
y
)
W
(
y
)
d
y
+
∫
x
b
u
1
(
x
)
u
2
(
y
)
f
(
y
)
a
2
(
y
)
W
(
y
)
d
y
{\displaystyle u(x)=\int _{a}^{x}{\cfrac {u_{2}(x)~u_{1}(y)~f(y)}{a_{2}(y)~W(y)}}~{\text{d}}y+\int _{x}^{b}{\cfrac {u_{1}(x)~u_{2}(y)~f(y)}{a_{2}(y)~W(y)}}~{\text{d}}y}
Template:Lectures