Prove for the polynomial ring
K
[
X
1
,
…
,
X
n
]
{\displaystyle {}K[X_{1},\ldots ,X_{n}]}
over an arbitrary field
K
{\displaystyle {}K}
that the formal partial derivatives commute.
Show that the ring of differential operators on
K
[
X
1
,
…
,
X
n
]
{\displaystyle {}K[X_{1},\ldots ,X_{n}]}
is not commutative.
Let
H
∈
K
[
X
1
,
…
,
X
n
]
{\displaystyle {}H\in K[X_{1},\ldots ,X_{n}]}
be a homogeneous polynomial of degree
e
{\displaystyle {}e}
. Show the equality
e
H
=
X
1
∂
H
∂
X
1
+
⋯
+
X
n
∂
H
∂
X
n
.
{\displaystyle {}eH=X_{1}{\frac {\partial H}{\partial X_{1}}}+\cdots +X_{n}{\frac {\partial H}{\partial X_{n}}}\,.}
Let
A
{\displaystyle {}A}
be a commutative
R
{\displaystyle {}R}
-algebra over a commutative ring
R
{\displaystyle {}R}
. Let
μ
f
:
A
⟶
A
,
x
⟼
f
x
,
{\displaystyle \mu _{f}\colon A\longrightarrow A,x\longmapsto fx,}
denote the
R
{\displaystyle {}R}
-linear multiplication map for
f
∈
A
{\displaystyle {}f\in A}
.
For
R
{\displaystyle {}R}
-linear maps
φ
1
,
φ
2
:
A
⟶
A
{\displaystyle \varphi _{1},\varphi _{2}\colon A\longrightarrow A}
set
[
φ
1
,
φ
2
]
=
φ
1
∘
φ
2
−
φ
2
∘
φ
1
.
{\displaystyle {}[\varphi _{1},\varphi _{2}]=\varphi _{1}\circ \varphi _{2}-\varphi _{2}\circ \varphi _{1}\,.}
Suppose that a
R
{\displaystyle {}R}
-derivation
δ
:
A
→
A
{\displaystyle {}\delta \colon A\rightarrow A}
is given. Show that for all
g
∈
A
{\displaystyle {}g\in A}
the map
[
δ
,
μ
g
]
{\displaystyle {}[\delta ,\mu _{g}]}
is multiplication by some element.
Let
R
{\displaystyle {}R}
denote a commutative
K
{\displaystyle {}K}
-algebra and let
E
:
R
→
R
{\displaystyle {}E\colon R\rightarrow R}
denote a
K
{\displaystyle {}K}
-linear map. Show that the following statements are equivalent.
E
{\displaystyle {}E}
is a differential operator of order
≤
n
{\displaystyle {}\leq n}
.
For arbitrary elements
f
0
,
f
1
,
…
,
f
n
∈
R
{\displaystyle {}f_{0},f_{1},\ldots ,f_{n}\in R}
we have
E
(
f
0
⋯
f
n
)
=
∑
s
=
1
n
(
−
1
)
s
+
1
∑
I
⊆
{
0
,
…
,
n
}
,
#
(
I
)
=
s
∏
i
∈
I
f
i
⋅
E
(
∏
i
∉
I
f
i
)
=
∑
I
⊆
{
0
,
…
,
n
}
,
I
≠
∅
(
−
1
)
#
(
I
)
+
1
∏
i
∈
I
f
i
⋅
E
(
∏
i
∉
I
f
i
)
.
{\displaystyle {}{\begin{aligned}E(f_{0}\cdots f_{n})&=\sum _{s=1}^{n}(-1)^{s+1}\sum _{I\subseteq \{0,\ldots ,n\},\,{\#\left(I\right)}=s}\prod _{i\in I}f_{i}\cdot E{\left(\prod _{i\notin I}f_{i}\right)}\\&=\sum _{I\subseteq \{0,\ldots ,n\},\,I\neq \emptyset }(-1)^{{\#\left(I\right)}+1}\prod _{i\in I}f_{i}\cdot E{\left(\prod _{i\notin I}f_{i}\right)}.\end{aligned}}}
Recall the implicite function theorem.
Describe the derivations on
K
[
X
,
Y
,
Z
]
/
(
Z
2
−
X
2
−
Y
2
)
{\displaystyle {}K[X,Y,Z]/(Z^{2}-X^{2}-Y^{2})}
and show that there are no unitary derivations on it.
We consider the twodimensional cone
C
{\displaystyle {}C}
given by the edges
R
≥
0
(
7
2
)
{\displaystyle {}\mathbb {R} _{\geq 0}{\begin{pmatrix}7\\2\end{pmatrix}}}
and
R
≥
0
(
5
6
)
{\displaystyle {}\mathbb {R} _{\geq 0}{\begin{pmatrix}5\\6\end{pmatrix}}}
and the corresponding monoid
C
∩
Z
2
{\displaystyle {}C\cap \mathbb {Z} ^{2}}
. Determine the describing integral linear forms and the signatures of the cone.
Let
C
⊆
R
n
{\displaystyle {}C\subseteq \mathbb {R} ^{n}}
denote a positve rational polyhedrial cone and
F
{\displaystyle {}F}
a facet of the cone. Let
ℓ
:
R
n
⟶
R
{\displaystyle \ell \colon \mathbb {R} ^{n}\longrightarrow \mathbb {R} }
be a linear form, such that its kernel contains the facet. Suppose that the linear form is given by integers which are coprime. Show that
ℓ
{\displaystyle {}\ell }
or
−
ℓ
{\displaystyle {}-\ell }
is the canonical integral linear form of
F
{\displaystyle {}F}
.
Determine for the monoid ring
K
[
X
,
Y
,
Z
]
/
(
Z
2
−
X
Y
)
{\displaystyle {}K[X,Y,Z]/(Z^{2}-XY)}
the canonical unitary differential operators
(and their order) for the monomials
X
{\displaystyle {}X}
,
Z
{\displaystyle {}Z}
,
X
Y
{\displaystyle {}XY}
.
Determine for the monoid ring
K
[
X
,
Y
,
Z
]
/
(
Z
W
−
X
Y
)
{\displaystyle {}K[X,Y,Z]/(ZW-XY)}
the canonical unitary differential operators (and their order) for the monomials
X
{\displaystyle {}X}
,
X
Y
{\displaystyle {}XY}
,
X
2
{\displaystyle {}X^{2}}
.
Determine for the numerical semigroup ring
K
[
U
3
,
U
4
,
U
5
,
…
]
{\displaystyle {}K[U^{3},U^{4},U^{5},\ldots ]}
unitary differential operators for the elements
U
3
,
U
4
,
U
5
{\displaystyle {}U^{3},U^{4},U^{5}}
.