Relation between Cauchy stress and Green strain
Show that, for thermoelastic materials, the Cauchy stress can be expressed in terms of the Green strain as

|
Proof:
Recall that the Cauchy stress is given by

The Green strain
and
. Hence, using the chain rule,

Now,

Taking the derivative with respect to
, we get

Therefore,
![{\displaystyle {\boldsymbol {\sigma }}={\frac {1}{2}}~\rho ~\left[{\frac {\partial e}{\partial {\boldsymbol {E}}}}:\left({\frac {\partial {\boldsymbol {F}}^{T}}{\partial {\boldsymbol {F}}}}\cdot {\boldsymbol {F}}+{\boldsymbol {F}}^{T}\cdot {\frac {\partial {\boldsymbol {F}}}{\partial {\boldsymbol {F}}}}\right)\right]\cdot {\boldsymbol {F}}^{T}\qquad \implies \qquad \sigma _{ij}={\frac {1}{2}}~\rho ~\left[{\frac {\partial e}{\partial E_{lm}}}\left({\frac {\partial F_{pl}}{\partial F_{ik}}}~F_{pm}+F_{pl}~{\frac {\partial F_{pm}}{\partial F_{ik}}}\right)\right]~F_{jk}~.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a06b9baf5b1d812e964fd026b251f56bdddb8c87)
Recall,

Therefore,
![{\displaystyle \sigma _{ij}={\frac {1}{2}}~\rho ~\left[{\frac {\partial e}{\partial E_{lm}}}\left(\delta _{pi}~\delta _{lk}~F_{pm}+F_{pl}~\delta _{pi}~\delta _{mk}\right)\right]~F_{jk}={\frac {1}{2}}~\rho ~\left[{\frac {\partial e}{\partial E_{lm}}}\left(\delta _{lk}~F_{im}+F_{il}~\delta _{mk}\right)\right]~F_{jk}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/169dd125d3830d61445485f1838ef1e494fc716c)
or,
![{\displaystyle \sigma _{ij}={\frac {1}{2}}~\rho ~\left[{\frac {\partial e}{\partial E_{km}}}~F_{im}+{\frac {\partial e}{\partial E_{lk}}}~F_{il}\right]~F_{jk}\qquad \implies \qquad {\boldsymbol {\sigma }}={\frac {1}{2}}~\rho ~\left[{\boldsymbol {F}}\cdot \left({\frac {\partial e}{\partial {\boldsymbol {E}}}}\right)^{T}+{\boldsymbol {F}}\cdot {\frac {\partial e}{\partial {\boldsymbol {E}}}}\right]\cdot {\boldsymbol {F}}^{T}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a32ed5e79da6a66cb9a5b3a9eb98b2e802f65c02)
or,
![{\displaystyle {\boldsymbol {\sigma }}={\frac {1}{2}}~\rho ~{\boldsymbol {F}}\cdot \left[\left({\frac {\partial e}{\partial {\boldsymbol {E}}}}\right)^{T}+{\frac {\partial e}{\partial {\boldsymbol {E}}}}\right]\cdot {\boldsymbol {F}}^{T}~.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/904a753aaf2024ad1e653e59121c8335e88ccf1d)
From the symmetry of the Cauchy stress, we have

Therefore,

and we get
