Advanced Engineering Mathematics in plain view

Subject classification: this is a mathematics resource.

Chapter 1 Linear Algebra

edit

Linear Algebra Note

edit
1. Vector Note (H1.pdf)
2. Inverse Matrix Note (H1.pdf)
3. Cramer's Rule (H1.pdf)
4. Gauss-Jordan Elimination Note (H1.pdf)
5. Row Reduction Note (H1.pdf)
6. Linear Systems Note (H1.pdf)
7. Eigenvalues Note (H1.pdf)

Chapter 2 Vector Calculus

edit

Vector Calculus Note

edit
1. Vector Function Note (H1.pdf)
2. Partial Derivative Note (H1.pdf)
3. Curl & Divergence Note (H1.pdf)
4. Multiple Integrals Note (H1.pdf)
5. Line Integrals Note (H1.pdf)
6. Surface Integrals Note (H1.pdf)
7. Green's Theorem Note (H1.pdf)

See also Vector & Tensor Analysis in plain view.

Chapter 3. Complex Analysis

edit


Complex Analysis Note

edit
1. Complex Number Note (H1.pdf)
2. Complex Function Note (H1.pdf)
3. Complex Integration Note (H1.pdf)
4. Complex Series Note (H1.pdf)
5. Residue Integration Note (H1.pdf)
6. Inversion Integration Note (H1.pdf)
7. Complex Curl, Div Note (H1.pdf)
8. Conformal Mapping Note (H1.pdf)
9. Complex Exp and Log Function Note (H1.pdf)
10. Complex Trig and TrigH Function Note (H1.pdf)
11. Complex Inverse Trig and TrigH Functions Note (H1.pdf)

See also Complex Analysis in plain view.

Chapter 4. Ordinary Differential Equations

edit
- Differential (1A.pdf)
- Integral (2A.pdf)
- Partial Derivative (3A.pdf)
- Complex Variable (4A.pdf)
- Separable Equations (1A.pdf)
- Linear Equations (2A.pdf)
- Exact Equations (3A.pdf)
- Substitution Method (4A.pdf)
- Linear Equations (1A.pdf)
- Reduction of Orders (2A.pdf)
- Undetermined Coefficients (3A.pdf)
- Variation of Parameters (4A.pdf)
- Cauchy-Euler Equations (5A.pdf)
- Green's Function (6A.pdf)
  • Higher-Order Differential Equation (3.A.pdf)
  • Boundary Value Problems (1A.pdf))
  • Series Solutions
  • Numerical Solutions
  • Systems of Linear Differential Equations
  • Systems of Non-linear Differential Equations

ODE Note

edit
1. First ODE Note (H1.pdf)
2. Second ODE Note (H1.pdf)
3. Linear Differential Equation System Note
Background on Matrix Algebra (H1.pdf)
Systems of LDE (H1.pdf)
4. Series Solution Note

Chapter 5. Ordinary Difference Equations

edit


Difference Equation Note

edit
DiffEQ-1: First Order Difference Equations Note (H1.pdf)
DiffEQ-2: Second Order Difference Equations Note (H2.pdf)
DiffEQ-3: Higher Order Difference Equations Note (H3.pdf)
DiffEQ-4: Non-linear Difference Equations Note (H4.pdf)

Chapter 6. Laplace Transform

edit

Laplace Transform Note

edit
- Laplace Transform Note (H1.pdf)

Chapter 7. z-Transform

edit
  • Definitions
  • Inverse Transform
  • Properties
  • Example Pairs
  • Bi-lateral Transform

Z Transform Note

edit
z-Trans-1: Definitions (H1.pdf)
z-Trans-2: Inverse Transform (H2.pdf)
z-Trans-3: Principles (H3.pdf)
z-Trans-4: Properties (H4.pdf)
z-Trans-5: Example Pairs (H5.pdf)
z-Trans-6: Comparison-1 : Geometric Series (H6.pdf)
z-Trans-7: Comparison-2 : Residue Integral (H7.pdf)
z-Trans-8: Bi-lateral Transform

Chapter 8. Fourier Analysis

edit
  • Strum-Louiville Problem
For flash animation, see fourier-series.com

Fourier Analysis Note

edit
1. Fourier Series Note
Fourier Series (H1.pdf)
Cosine & Sine Series (H1.pdf)
Complex Fourier Series (H1.pdf)
Fourier Integral (H1.pdf)
2. Strum-Louiville Problem Note
Bessel Equation (H1.pdf)
Legendre Equation (H1.pdf)
Background (H1.pdf)
Eigenfunctions (H1.pdf)

Chapter 9. Partial Differential Equations

edit
  • Boundary Value Problem (BVP) in Rectangular Coordinates
1. Overview (H1.pdf)
2. Heat Equation (H1.pdf)
3. Wave Equation (H1.pdf)
4. Laplace Equation (H1.pdf)
5. Separable PDE (H1.pdf)
4. Nonhomogeneous PDE (H1.pdf)
  • Boundary Value Problem (BVP) in Other Coordinates
  • Integral Transform Method
  • Numerical Solutions

Chapter 10. Partial Difference Equations

edit


go to [ Electrical_&_Computer_Engineering_Studies ]

edit