# Physics/Essays/Fedosin/Quantum Gravitational Resonator

Quantum Gravitational Resonator (QGR) – closed topological object of the three dimensional space, in the general case – ‘’cavity’’ of arbitrary form, which has definite ‘’surface’’ and ‘’thickness’’. The QGR can have “infinite” phase shifted oscillations of gravitational field strength and gravitational torsion field, due to the quantum properties of QGR.

## History

Considering that the theory of the gravitational resonator is based on the Maxwell-like gravitational equations and Quantum Electromagnetic Resonator (QER), therefore the QGR history is close connected with the QER history.

## Classical gravitational resonator

### Gravitational LC circuit

The gravitational LC circuit can be composed by analogy with the electromagnetic LC circuit, and gravitational field strength and gravitational torsion field oscillate in the circuit as a result of oscillating mass current.

Gravitational voltage on gravitational inductance is:

${\displaystyle V_{gL}=-L_{g}\cdot {\frac {dI_{gL}}{dt}}.\ }$

Gravitational mass current through gravitational capacitance is:

${\displaystyle I_{gC}=C_{g}\cdot {\frac {dV_{gC}}{dt}}.\ }$

Differentiating these equations with respect to the time variable, we obtain:

${\displaystyle {\frac {dV_{gL}}{dt}}=-L_{g}{\frac {d^{2}I_{gL}}{dt^{2}}},\qquad {\frac {dI_{gC}}{dt}}=C_{g}{\frac {d^{2}V_{gC}}{dt^{2}}}.}$

Considering the following relationships for voltages and currents:

${\displaystyle V_{gL}=V_{gC}=V_{g},\qquad I_{gL}=I_{gC}=I_{g},\ }$

we obtain the following differential equations for gravitational oscillations:

${\displaystyle ~{\frac {d^{2}I_{g}}{dt^{2}}}+{\frac {1}{L_{g}C_{g}}}I_{g}=0,\qquad {\frac {d^{2}V_{g}}{dt^{2}}}+{\frac {1}{L_{g}C_{g}}}V_{g}=0.\quad \quad \quad \quad \quad (1)\ }$

Furthermore, considering the following relationships between voltage and mass, current and flux of gravitational torsion field:

${\displaystyle m=C_{g}V_{g},\qquad \Phi =L_{g}I_{g}}$

the above oscillation equation can be rewritten in the form:

${\displaystyle {\frac {d^{2}m}{dt^{2}}}+{\frac {1}{L_{g}C_{g}}}m=0.\quad \quad \quad \quad \quad (2)\ }$

This equation has the partial solution:

${\displaystyle m(t)=m_{0}\sin(\omega _{g}t),\ }$

where

${\displaystyle \omega _{g}={\frac {1}{\sqrt {L_{g}C_{g}}}}\ }$

is the resonance frequency, and

${\displaystyle \rho _{LC}={\sqrt {\frac {L_{g}}{C_{g}}}},\ }$

is the gravitational characteristic impedance.

For the sake of completeness we can present the differential equation for the flux of gravitational torsion field in the form:

${\displaystyle {\frac {d^{2}\Phi }{dt^{2}}}+{\frac {1}{L_{g}C_{g}}}\Phi =0.\quad \quad \quad \quad \quad (3)\ }$

The realization of gravitational LC circuit is described in a section of maxwell-like gravitational equations.

## Quantum general approach

### Quantum gravitational LC circuit oscillator

Inductance momentum quantum operator in the electric-like gravitational mass space can be presented in the following form:

${\displaystyle {\hat {p}}_{gm}=-i\hbar {\frac {d}{dm}},\quad \quad \quad \quad \quad {\hat {p}}_{gm}^{*}=i\hbar {\frac {d}{dm}},\quad \quad \quad \quad \quad (4a)\ }$

where ${\displaystyle \hbar \ }$  is reduced Plank constant, ${\displaystyle {\hat {p}}_{gm}^{*}\ }$  is the complex-conjugate momentum operator, ${\displaystyle m\ }$  is the induced mass.

Capacitance momentum quantum operator in the magnetic-like gravitational mass space can be presented in the following form:

${\displaystyle {\hat {p}}_{g\Phi }=-i\hbar {\frac {d}{d\Phi }},\quad \quad \quad \quad \quad {\hat {p}}_{g\Phi }^{*}=i\hbar {\frac {d}{d\Phi }},\quad \quad \quad \quad \quad (4b)\ }$

where ${\displaystyle \Phi \ }$  is the induced torsion field flux, which is imitated by electric-like gravitational mass current (${\displaystyle i_{g}\ }$ ):

${\displaystyle \Phi =L_{g}\cdot i_{g}.\ }$

We can introduce the third momentum quantum operator in the current form:

${\displaystyle {\hat {p}}_{gi}=-{\frac {i\hbar }{L_{g}}}{\frac {d}{di_{g}}},\quad \quad \quad \quad \quad {\hat {p}}_{gi}^{*}={\frac {i\hbar }{L_{g}}}{\frac {d}{di_{g}}},\quad \quad \quad \quad \quad (4c)\ }$

These quantum momentum operators defines three Hamilton operators:

${\displaystyle {\hat {H}}_{gLm}=-{\frac {\hbar ^{2}}{2L_{g}}}\cdot {\frac {d^{2}}{dm^{2}}}+{\frac {L_{g}\omega _{0}^{2}}{2}}{\hat {m}}^{2}\quad \quad \quad \quad \quad (5a)\ }$
${\displaystyle {\hat {H}}_{gC\Phi }=-{\frac {\hbar ^{2}}{2C_{g}}}\cdot {\frac {d^{2}}{d\Phi ^{2}}}+{\frac {C_{g}\omega _{0}^{2}}{2}}{\hat {\Phi }}^{2}\quad \quad \quad \quad \quad (5b)\ }$
${\displaystyle {\hat {H}}_{gLi}=-{\frac {\hbar ^{2}\omega _{0}^{2}}{2L_{g}}}\cdot {\frac {d^{2}}{di_{g}^{2}}}+{\frac {L_{g}\omega _{0}}{2}}{\hat {i}}_{g}^{2},\quad \quad \quad \quad \quad (5c)\ }$

where ${\displaystyle \omega _{0}={\frac {1}{\sqrt {L_{g}C_{g}}}}\ }$  is the resonance frequency. We consider the case without dissipation (${\displaystyle R_{g}=0\ }$ ). The only difference of the gravitational charge spaces and gravitational current spaces from the traditional 3D- coordinate space is that it is one dimensional (1D). Schrodinger equation for the gravitational quantum LC circuit could be defined in three form:

${\displaystyle -{\frac {\hbar ^{2}}{2L_{g}}}{\frac {d^{2}\Psi }{dm^{2}}}+{\frac {L_{g}\omega _{0}^{2}}{2}}m^{2}\Psi =W\Psi \quad \quad \quad \quad \quad (6a)\ }$
${\displaystyle -{\frac {\hbar ^{2}}{2C_{g}}}{\frac {d^{2}\Psi }{d\Phi ^{2}}}+{\frac {C_{g}\omega _{0}^{2}}{2}}\Phi ^{2}\Psi =W\Psi \quad \quad \quad \quad \quad (6b)\ }$
${\displaystyle -{\frac {\hbar ^{2}\omega _{0}^{2}}{2L_{g}}}{\frac {d^{2}\Psi }{di_{g}^{2}}}+{\frac {L_{g}\omega _{0}}{2}}i_{g}^{2}\Psi =W\Psi .\quad \quad \quad \quad \quad (6c)\ }$

To solve these equations we should to introduce the following dimensionless variables:

${\displaystyle \xi _{m}={\frac {m}{m_{0}}};\quad \quad m_{0}={\sqrt {\frac {\hbar }{L_{g}\omega _{0}}}};\quad \quad \lambda _{m}={\frac {2W}{\hbar \omega _{0}}}\quad \quad (7a)\ }$
${\displaystyle \xi _{\Phi }={\frac {\Phi }{\Phi _{0}}};\quad \quad \Phi _{0}={\sqrt {\frac {\hbar }{C_{g}\omega _{0}}}};\quad \quad \lambda _{\Phi }={\frac {2W}{\hbar \omega _{0}}}\quad \quad (7b)\ }$
${\displaystyle \xi _{i}={\frac {i_{g}}{i_{g0}}};\quad \quad i_{g0}={\sqrt {\frac {\hbar \omega _{0}}{L_{g}}}};\quad \quad \lambda _{i}={\frac {2W}{\hbar \omega _{0}}}.\quad \quad (7c)\ }$

where ${\displaystyle m_{0}\ }$  is scaling induced electric-like gravitational mass; ${\displaystyle \Phi _{0}\ }$  is scaling induced gravitational torsion field flux and ${\displaystyle i_{g0}\ }$  is scaling induced mass current.

Then the Schrodinger equation will take the form of the differential equation of Chebyshev-Ermidt:

${\displaystyle \left({\frac {d^{2}}{d\xi ^{2}}}+\lambda -\xi ^{2}\right)\Psi =0.\ }$

The eigen values of the Hamiltonian will be:

${\displaystyle W_{n}=\hbar \omega _{0}(n+1/2),\quad \quad n=0,1,2,\dots \ }$

where at ${\displaystyle n=0\ }$  we shall have zero oscillation:

${\displaystyle W_{0}=\hbar \omega _{0}/2.\ }$

In the general case the scaling mass and torsion flux can be rewritten in the form:

${\displaystyle m_{0}={\sqrt {\frac {\hbar }{L_{g}\omega _{0}}}}={\frac {m_{P}}{\sqrt {4\pi }}}={\sqrt {\frac {\hbar c}{4\pi G}}},\ }$
${\displaystyle \Phi _{0}={\sqrt {\frac {\hbar }{C_{g}\omega _{0}}}}={\frac {h}{m_{P}{\sqrt {\pi }}}}={\sqrt {\frac {4\pi G\hbar }{c}}},\ }$

where ${\displaystyle m_{P}\ }$  is the Planck mass, ${\displaystyle c\ }$  is the speed of light, ${\displaystyle G\ }$  is the gravitational constant.

These three equations (4) form the base of the nonrelativistic quantum gravidynamics, which considers elementary particles from the intrinsic point of view. Note that, the standard quantum electrodynamics considers elementary particles from the external point of view.

### Gravitational resonator as quantum LC circuit

Due to Luryi density of states (DOS) approach we can define gravitational quantum capacitance as:

${\displaystyle C_{g}=m_{g}^{2}\cdot D_{2D}\cdot S_{g},\ }$

and quantum inductance as:

${\displaystyle L_{g}=\Phi _{g}^{2}\cdot D_{2D}\cdot S_{g},\ }$

where ${\displaystyle S_{g}\ }$  is the resonator surface area, ${\displaystyle D_{2D}={\frac {m_{0}}{\pi \hbar ^{2}}}\ }$  is two dimensional (2D) DOS, ${\displaystyle m_{0}\ }$  is the carrier mass, ${\displaystyle m_{g}\ }$  is the induced gravitational mass, and ${\displaystyle \Phi _{g}\ }$  is the gravitational torsion field flux.

Energy stored on quantum capacitance is:

${\displaystyle W_{Cg}={\frac {m_{g}^{2}}{2C_{g}}}={\frac {1}{2D_{2D}S_{g}}}.\ }$

Energy stored on quantum inductance is:

${\displaystyle W_{Lg}={\frac {\Phi _{g}^{2}}{2L_{g}}}={\frac {1}{2D_{2D}S_{g}}}=W_{Cg}.\ }$

Resonator angular frequency is:

${\displaystyle \omega _{gR}={\frac {1}{\sqrt {L_{g}C_{g}}}}={\frac {1}{m_{g}\Phi _{g}D_{2D}S_{g}}}.\ }$

Energy conservation law for zero oscillation is:

${\displaystyle W_{gR}={\frac {1}{2}}\hbar \omega _{gR}={\frac {\hbar }{2m_{g}\Phi _{g}D_{2D}S_{g}}}=W_{Cg}=W_{Lg}.\ }$

This equation can be rewritten as:

${\displaystyle m_{g}\Phi _{g}=\hbar .\ }$

Characteristic gravitational resonator impedance is:

${\displaystyle \rho _{g}={\sqrt {\frac {L_{g}}{C_{g}}}}={\frac {\Phi _{g}}{m_{g}}}=2\alpha {\frac {\Phi _{g0}}{m_{S}}}=\rho _{g0},\ }$

where ${\displaystyle \alpha \ }$  is the fine structure constant, ${\displaystyle \Phi _{g0}=h/m_{S}\ }$  is the gravitational torsion flux quantum, ${\displaystyle h\ }$  is the Planck constant, ${\displaystyle m_{S}\ }$  is the Stoney mass, ${\displaystyle \rho _{g0}\ }$  is the gravitational characteristic impedance of free space.

Considering above equations, we can find out the following induced mass and induced gravitational torsion flux:

${\displaystyle m_{g}={\frac {m_{S}}{\sqrt {4\pi \alpha }}},\ }$
${\displaystyle \Phi _{g}={\sqrt {\frac {\alpha }{\pi }}}{\frac {h}{m_{S}}}.\ }$

Note, that these induced quantities maintain the energy balance between resonator oscillation energy and total energy on capacitance and inductance

${\displaystyle \hbar \omega _{gR}=W_{gL}(t)+W_{gC}(t).\ }$

Since capacitance oscillations are phase shifted (${\displaystyle \psi =\pi /2\ }$ ) with respect to inductance oscillations, therefore we get:

${\displaystyle W_{gL}={\begin{cases}0,&{\mbox{at }}t=0;\psi =0{\mbox{ and}}\,t={\frac {T_{R}}{2}};\psi =\pi \\W_{L},&{\mbox{at }}t={\frac {T_{R}}{4}};\psi ={\frac {\pi }{4}}{\mbox{ and}}\,t={\frac {3T_{R}}{4}};\psi ={\frac {3\pi }{4}}\end{cases}}\ }$
${\displaystyle W_{gC}={\begin{cases}W_{C},&{\mbox{at }}t=0;\psi =0{\mbox{ and}}\,t={\frac {T_{R}}{2}};\psi =\pi \\0,&{\mbox{at }}t={\frac {T_{R}}{4}};\psi ={\frac {\pi }{4}}{\mbox{ and}}\,t={\frac {3T_{R}}{4}};\psi ={\frac {3\pi }{4}}\end{cases}}\ }$

where ${\displaystyle T_{R}={\frac {2\pi }{\omega _{gR}}}\ }$  is the oscillation period.

## Applications

### Planckion resonator

${\displaystyle r_{P}={\frac {\lambda _{P}}{2\pi }},\ }$

where ${\displaystyle \lambda _{P}={\frac {h}{m_{P}c}}\ }$  is the Compton wavelength of planckion, ${\displaystyle c\ }$  is the speed of light, ${\displaystyle m_{P}\ }$  is the Planck mass.

Planckion surface scaling parameter is:

${\displaystyle S_{P}=2\pi r_{P}^{2}={\frac {\lambda _{P}^{2}}{2\pi }}.\ }$

Planckion angular frequency is:

${\displaystyle \omega _{P}={\frac {m_{P}c^{2}}{\hbar }}={\frac {2\pi c}{\lambda _{P}}}.\ }$

Planckion density of states is:

${\displaystyle D_{P}={\frac {1}{S_{P}W_{P}}}={\frac {1}{S_{P}\hbar \omega _{P}}}={\frac {m_{P}}{2\pi \hbar ^{2}}}.\ }$

Standard DOS quantum resonator approach yields the following values for the gravitational reactive quantum parameters:

${\displaystyle C_{P}=m_{g}^{2}D_{P}S_{P}={\frac {m_{S}^{2}}{4\pi \alpha }}{\frac {m_{P}}{2\pi \hbar ^{2}}}{\frac {\lambda _{P}^{2}}{2\pi }}={\frac {\varepsilon _{g}\lambda _{P}}{2\pi }}={\frac {m_{P}}{4\pi c^{2}}},\ }$

where ${\displaystyle \varepsilon _{g}={\frac {1}{4\pi G}}\ }$  is the gravitoelectric gravitational constant in the set of selfconsistent gravitational constants, and

${\displaystyle L_{P}=\Phi _{g}^{2}D_{P}S_{P}={\frac {\Phi _{0}^{2}}{4\pi \beta }}D_{P}S_{P}={\frac {\alpha h^{2}}{\pi m_{S}^{2}}}D_{P}S_{P}={\frac {\alpha h^{2}}{\pi m_{S}^{2}}}{\frac {m_{P}}{2\pi \hbar ^{2}}}{\frac {\lambda _{P}^{2}}{2\pi }}={\frac {\mu _{g}\lambda _{P}}{2\pi }},\ }$

where ${\displaystyle \mu _{g}={\frac {4\pi G}{c^{2}}}\ }$  is the gravitomagnetic gravitational constant of selfconsistent gravitational constants, ${\displaystyle \beta ={\frac {1}{4\alpha }}\ }$  is the gravitational torsion coupling constant, which is equal to magnetic coupling constant.

Thus, s.c. free planckion can be considered as discoid quantum resonator which has radius ${\displaystyle r_{P}\ }$ .

### Bohr atom as a gravitational quantum resonator

The gravitational quantum capacitance for Bohr atom is:

${\displaystyle C_{\Gamma }=m_{R}^{2}D_{B}S_{B}=\varepsilon _{\Gamma }a_{B},\ }$

where ${\displaystyle a_{B}\ }$  is the Bohr radius, ${\displaystyle S_{B}=\pi a_{B}^{2}\ }$  is the flat surface area, ${\displaystyle ~m_{R}={\frac {\sqrt {m_{p}m_{e}}}{2{\sqrt {\pi }}}}}$  is the induced mass, ${\displaystyle D_{B}={\frac {m_{e}}{\pi \hbar ^{2}}}\ }$  is the density of states, ${\displaystyle \varepsilon _{\Gamma }={\frac {1}{4\pi \Gamma }}}$  is the gravitoelectric gravitational constant of selfconsistent gravitational constants in the field of strong gravitation, ${\displaystyle \Gamma }$  is the strong gravitational constant, ${\displaystyle m_{p}\ }$  and ${\displaystyle m_{e}\ }$  are masses of proton and electron.

The gravitational quantum inductance is:

${\displaystyle L_{\Gamma }=\phi _{\Gamma }^{2}D_{B}S_{B}=\mu _{\Gamma }a_{B},\ }$

where ${\displaystyle \mu _{\Gamma }={\frac {4\pi \Gamma }{c^{2}}}}$  is the gravitomagnetic gravitational constant of selfconsistent gravitational constants in the field of strong gravitation, and the induced gravitational torsion flux is:

${\displaystyle \phi _{\Gamma }={\frac {\alpha h}{\sqrt {\pi m_{p}m_{e}}}}={\frac {2\alpha {\sqrt {m_{e}}}}{\sqrt {\pi m_{p}}}}\sigma _{e}={\frac {2\alpha {\sqrt {m_{p}}}}{\sqrt {\pi m_{e}}}}\Phi _{\Gamma }={\frac {2{\sqrt {m_{p}}}}{\alpha {\sqrt {\pi m_{e}}}}}\Phi _{\Omega },}$

where ${\displaystyle \sigma _{e}\ }$  is the velocity circulation quantum, ${\displaystyle \Phi _{\Gamma }={\frac {h}{2m_{p}}}}$  is the strong gravitational torsion flux quantum, which is related to proton with its mass ${\displaystyle m_{p}}$ .

Here the strong gravitational electron torsion flux for the first energy level is:

${\displaystyle \Phi _{\Omega }=\Omega S_{B}={\frac {\mu _{\Gamma }m_{e}}{4\pi a_{B}}}\sigma _{e}={\frac {\Gamma m_{e}}{c^{2}a_{B}}}\sigma _{e}={\frac {\Gamma h}{2c^{2}a_{B}}}={\frac {\pi \alpha \Gamma m_{e}}{c}}=\alpha ^{2}\Phi _{\Gamma },\ }$

where ${\displaystyle \Omega \ }$  is the gravitational torsion field of strong gravitation in electron disc.

The gravitational wave impedance is:

${\displaystyle \rho _{\Gamma }={\sqrt {\frac {L_{\Gamma }}{C_{\Gamma }}}}={\sqrt {\frac {\mu _{\Gamma }}{\varepsilon _{\Gamma }}}}={\frac {4\pi \Gamma }{c}}=6.346\cdot 10^{21}\,\mathrm {m^{2}/(s\cdot kg)} .\ }$

The resonance frequency of gravitational oscillation is:

${\displaystyle \omega _{\Gamma }={\frac {1}{\sqrt {L_{\Gamma }C_{\Gamma }}}}={\frac {c}{a_{B}}}={\frac {\omega _{B}}{\alpha }},\ }$

where ${\displaystyle \omega _{B}={\frac {c\alpha }{a_{B}}}\ }$  is the angular frequency of electron rotation in atom.

For the quantum gravitational resonator approach we can derive the following maximal values for the energies stored on capacitance and inductance:

${\displaystyle W_{C}={\frac {m_{R}^{2}}{2C_{\Gamma }}}={\frac {\hbar \omega _{B}}{2}}={\frac {\alpha \hbar \omega _{\Gamma }}{2}}=W_{B},\ }$
${\displaystyle W_{L}={\frac {\phi _{\Gamma }^{2}}{2L_{\Gamma }}}=W_{B}.\ }$

The energy ${\displaystyle W_{B}\ }$  of the wave of strong gravitation in the electron matter has the same value as in case of rotating electromagnetic wave, and can be associated with the mass:

${\displaystyle m_{Bmin}={\frac {W_{B}}{c^{2}}}={\frac {\hbar \omega _{B}}{2c^{2}}}={\frac {\alpha ^{2}}{2}}m_{e}<

which could be named as the minimal mass-energy of the quantum resonator.

One way to explain the minimal mass-energy ${\displaystyle m_{Bmin}}$  is the supposition that Planck constant can be used at all matter levels including the level of star. As a result of the approach one should introduce different scales such as Planck scale, Stoney scale, Natural scale, with the proper masses and lengths. But such proper masses do not relate with the real particles.

Another way recognizes the similarity of matter levels and SPФ symmetry as the principles of matter structure where the action constants depend on the matter levels. For example there is the stellar Planck constant at the star level that describes star systems without any auxiliary mass and scales.

## Reference Books

• Johnstone Stoney, Phil. Trans. Roy. Soc. 11, (1881)
• Stratton J.A.(1941). Electromagnetic Theory. New York, London: McGraw-Hill.p.615. djvu
• Детлаф А.А., Яворский Б.М., Милковская Л.Б.(1977). Курс физики. Том 2. Электричество и магнетизм (4-е издание). М.: Высшая школа, "Reference Book on Electricity" djvu
• Гольдштейн Л.Д., Зернов Н.В. (1971). Электромагнитные поля. 2- издание. Москва: Советское Радио. 664с. "Electromagnetic Fields" djvu